Jerzy Nita
Urszula Myga-Piątek

PRÓBA WYKORZYSTANIA MAP I MODELI NUMERYCZNYCH DO ANALIZY GEOMETRICZNYCH UKŁADÓW SIECI HYDROGRAFICZNEJ NA PRZYKŁADZIE WOJEWÓDZTWA ŚLĄSKIEGO

WPROWADZENIE

CELE OPRACOWANIA

Zastosowanie technik analizy komputerowej do generowania map i modeli numerycznych może być pomocne w ustalaniu przyczyn i przyrodniczych konsekwencji wytworzenia się geometrycznych układów sieci hydrograficznej. Zastosowane przez autorów narzędzia analizy numerycznej pozwalają na morfogenetyczno-statystyczny opis układów sieci rzecznnej i są podstawą do precyzyjnej interpretacji struktury wewnętrznej tych układów. Dodatkowy wolum daje kompilację tematycznej warstwy wód powierzchniowych z przestrzennym modelem rzeźby i mapą geologiczną, co z kolei daje możliwość wyjaśniania związków między obliczonymi, teoretycznymi wskaźnikami a realnie istniejącymi elementami środowiska.

Na obecnym etapie prac badawczych autorzy skoncentrowali się na analizie wybranych parametrów sieci rzecznej, przyjmując za punkt odniesienia charakterystykę geometrycznych układów sieci rzecznej na terenie województwa śląskiego. W związku z tym postawiono poniższe cele szczegółowe:

- graficzne zilustrowanie (wizualizacja) wszystkich cieków województwa śląskiego na modelu numerycznym;
- wykorzystanie technik komputerowych do szczegółowego opisu geometrycznych układów sieci rzecznej województwa śląskiego;
- próba weryfikacji i doprecyzowania dotychczasowego poglądu na interpretację układów sieci rzecznej na tle przestrzennych modeli rzeźby terenu,
- obliczenie wybranych wskaźników i charakterystyk sieci rzecznej;
- zilustrowanie wybranych przykładów najbardziej charakterystycznych układów sieci rzecznej;
- wskazanie na tej podstawie obszarów o ujednoliconych cechach geometrycznego rozkładu sieci rzecznej.

Obszar badań został objęty granicami województwa śląskiego, ze względu na to, iż autorzy dysponowali dokładnym materiałem kartograficznym z tego obszaru. Ponadto analizy krajobrazowe wykonane dla jednostek administracyjnych mają duże znaczenie aplikacyjne np. w sporządzaniu opracowań ekofizjograficznych na potrzeby planowania przestrzennego. Sieć rzeczna w granicach województwa jest ponadto jednym z ważniejszych elementów, które należy uwzględnić w procesach zarządzania przestrzennego oraz w strategiach kryzysowych na szczeblu makroregionu.

GEOMETRYCZNE UKŁADY SIECI RZECZNEJ

Sieć rzeczna każdego regionu zależna jest od zespołu czynników fizycznogeograficznych tj.: budowa geologiczna i rzeźba terenu, a warunki klimatyczne i pokrycie roślinne. Dodatkowo na terenie województwa śląskiego sieć rzeczną została wówczas silnie zmodyfikowana przez procesy i formy antropogeniczne. W zależności od wymienionych czynników sieć rzeczna tworzy różne geometryczne układy. W literaturze geomorfologicznej i hydrologicznej

Opublikowana w 1945 r. prawa R. Hortona dała podstawę do opracowania podstawowych charakterystyk uwzględnianych przy analizie sieci rzecznej, do których zalicza się m.in. wskaźniki takie jak: liczba węzłów źródlowych (o); całkowita liczba cieków różnego rzędu (ΣN₀); wskaźnik bifurkacji (R₀); całkowita długość cieków różnego rzędu (ΣL₀); wskaźnik długości cieków (R₀); wskaźnik powierzchni zlewni (R₀); gęstość sieci rzecznej (D); wskaźnik częstości cieków (F₀); wskaźnik tekstury sieci rzecznej (T₀) (Bajkiwicz-Grabowska, Mikulski, 1999; Scheidegger, 1974; Soczyńska, 1997).

METODYKA OPRACOWANIA

Materiały cyfrowe do opracowania pozyskano ze szczegółowej mapy hydrograficznej i sozologicznej Polski w skali 1:50 000 oraz z modelu numerycznego Polski udostępnionego dzięki uprzejmości Wojskowego Ośrodka Geodezji i Teledetekcji w Warszawie. Sieć rzeczna zobrazowana w postaci wektoryowej na mapie hydrograficznej przedstawiona jest z najwyższą szczegółowością (co na wybranych przypadkach zweryfikowano w terenie). Wyjątkowa dokładność zobrazowania dotyczy kanałów i rowów odwadniających oraz niewielkich cieków okresowych. Ciekawym zestawieniem wydaje się wizualizacja sieci rzecznej na cyfrowym modelu rzeźby terenu w kontekście makroregionów (w obowiązującej regionalizacji J. Kondrackiego). Obraz ten w znacznym zakresie jest rozbieżny. Zaskakujące zestawienie przestrzenne daje nalożeń układy sieci rzecznej na model rzeźby terenu.

Model rzeźby terenu wykonano na podstawie cyfrowych danych DTED (Digital Terrain Elevation Data). Dane wiernie oddają budowę morfologiczną terenu ponieważ pozyskano je z map topograficznych w skali 1:50 000 i są one zbiorem podstawowych wojskowych danych w standardzie NATO. Są to zbiory rastrowe w układzie współrzędnych geograficznych na elipsoidzie WGS 84 o rozmiarach arkuszy cyfrowych 1° × 1°. Rozdzielczość przestrzenna dla tych danych wynosi 3’×3’. dla szerokości geograficznej 0°-50°, i 3° × 6° dla szer. 50°-70°. Daje to przeciwnie rozmierz terenowy piksela 30x30 m (Perski, 2003). Wartości wysokościowe poszczególnych elementów rastra są uśrednione do całkowitych metrów. W opracowaniu dla celów pokrycia całego województwa wykorzystano połączone ze sobą 6 sąsiednich arkuszy cyfrowych DTED. Dane te wizualizowano używając metod reliefs cieniowanego, przez nadanie wirtualnego oświetlenia z kierunku NW. Ponadto zróżnicowanie wysokości przedstawiono za pomocą skal barw, uzyskując plastyczny obraz terenu.
Na model nałożono aktualną treść pochodząca z aktualnych arkuszy map: Mapy Topograficznej w skali 1:10 000 (w układzie 1965 i 1992); Mapy Hydrologicznej (w układzie 1992) oraz mapy sozologicznej w skali 1:50 000 (w układzie 1942).

Podstawowym narzędziem analitycznym było oprogramowanie MapInfo i Vertical Mapper, które pozwoliło na zestawianie różnych warstw i modułów tematycznych oraz obliczenia dotyczące podstawowych parametrów i charakterystyk sieci rzecznej. Wykonany w oparciu o powyższy model analizy pozwoliły na obliczenie wartości wybranych parametrów sieci rzecznej.

Całkowita długość wszystkich cieków w granicach województwa wynosi 4425 km. Całkowita ilość cieków w województwie może być podawana w sposób dwustopniowy. Wartość ok. 4000 można przyjąć jako ilość wszystkich cieków stałych, natomiast wartość dwukrotnie wyższa opisuje ilość wszystkich cieków, także okresowych, w tym rowów i kanałów melioracyjnych.

STATYSTYCZNA ANALIZA WYNIKÓW

1. Gęstość sieci rzecznej (D) jest to iloraz sumy długości cieków różnego rzędu i powierzchni pola rozpatrywanego obszaru (w tym przypadku województwa);

\[D = \frac{\sum L_i}{A} = \frac{4425\text{km}}{12300\text{km}^2} = 0,36\text{km/km}^2 \]

Wskaźnik ten jest bardzo zmienny w zależności od rozpatrywanego regionu fizyczno geograficznego. Na jego wielkość mają wpływ ponadto trudności w jednoznacznym ustaleniu liczby cieków na podstawie aktualnych materiałów kartograficznych.

2. Wskaźnik częstości cieków (F_u) jest to iloraz całkowitej liczby cieków różnego rzędu (ΣN_i), czyli tzw. odcinków Strahlera do powierzchni zlewni (A);

\[F_u = \frac{\sum N_u}{A} = \frac{40000}{12300\text{km}^2} = 3,25/\text{km}^2 \text{ dla cieków stałych} \]

Wskaźnik ten wykazuje także dużą zmienność w obrębie analizowanego obszaru, a całkowita liczba cieków brana jako podstawa do obliczeń ma charakter bardzo przybliżony.

\[F_u = \frac{\sum N_u}{A} = \frac{80000}{12300\text{km}^2} = 6,536/\text{km}^2 \]

W tym przypadku interpretacją objęto najdrobniejsze cieki (także okresowe) np. rowy, kanały melioracyjne. Wielkość ta zatem jest także bardzo zmienna,
i zależna od lokalnych warunków litologicznych i glebowych a także panujących warunków atmosferycznych oraz stopnia zaawansowania prac melioracyjnych.

WIZUALIZACJA SIECI RZECZNEJ NA MODELU DEM JAKO PRZYKŁAD ANALIZY PRZESTRZENNEGO ROZKŁADU ELEMENTÓW KRAJOBRAZOWYCH

LOKALIZACJA PRZYKŁADOWYCH UKŁADÓW SIECI RZECZNEJ I ICH ZWIĄZEK Z BUDOWĄ GEOLOGICZNĄ I RZEŻBĄ

1. Układ **kratowy** - *skośny* (rys.3-1) występuje na terenie województwa śląskiego w obrębie szerokich morfostrukturalnych dolin rzeki Wiercicy i PILicy w odcinku powstałym w podłożu utworów kredowych; krawędzie strukturalne zbudowane z utworów kredowych tworzą najwyższy poziom wzgórza. Szerokość doliny wynosi w tej okolicy ok. 5-10 km.

2. Układ **prostokątny** - (rys.3-2) występuje w obrębie szerokiej morfostrukturalnej doliny rzeki PILicy w środkowym odcinku powstałym w podłożu utworów kredowych. Krawędzie strukturalne zbudowane z utworów kredowych tworzą najwyższy poziom wzgórza. Szerokość doliny wynosi w tej okolicy ok. 5 km. Układ ten jest ponadto wynikiem współczesnej gospodarki człowieka –zabiegi
melioracyjne. Rzeki o układzie prostokątnym, kratowym (katowym), występują także w niewielkich fragmentach na zachód od Goczałkowic, na wschodź od Soły.

3. **Układ nieregularny** (rys.3-3) powstał na przedpolu południowym odpywu wód w okresie zlodowacenia środkowopolskiego; w północnej części występuje węglanowy Garb Woźnicki, tak że naturalny odpływ wód był skierowany na SW. Płytko w podłożu leżały utwory glin połodowcowych przykrytych piaskami i żwirami połodowcowymi częściowo zwymionymi. Warunki te należą używać za sprzyjające do rozwoju układu nieregularnego.

4. **Układ widlasty** (rys.3-4) występuje lokalnie na pewnych odcinkach rzek zwłaszcza w obrębie czwartorzędu wysoczyn połodowcowych, obszarów zbudowanych z piasków i żwirów połodowcowych, pomiędzy którymi wznoszą się płyty wysoczyn zbudowanych z glin morenowych. Obszary te charakteryzują się niewielką siecią rzeczną. Układ widlasty występuje sporadycznie na terenie województwa - lokalnie na południowy-zachód od Gliwic.

5. **Układy promieniste** (rys.4-1) występują w obszarach przyzdroślowych (dolne biegi rzek) na stokach wyniesień triasowego Garbu Mikołowa i innych niewielkich wzniesień, zwłaszcza o wyniesionych w podłożu skalach starszych, nawet jeżeli na stoku występują podatne na erozję utwory piaszczysto-żwirowe połodowcowe.

6. **Układy dendrytyczne** (rys.4-2) są częstym w jednorodnych osadach połodowcowych wysoczyn zbudowanych z utworów glin i piasków i żwirów połodowcowych; Układy dendrytyczne występują w części zachodniej i południowej województwa, np. okolice Jastrzębia Zdrój.

7. W Układzie równoległym (rys.4-3) wpływ na geometrię mają utwory fliszowe, podbudowane w górnych partiach zwierzelinami i znacznym kątem sądu terenu co sprawia że rzeki prawie równolegle zmierzają do doliny głównej. Najwięcej spotykanych przypadków rzek w układzie równoległym występuje w części Zachodniej województwa, ale również w okolicach miejscowości Buczkwice-Leżygowice-Lipowa.

8. **Układ pierzasty** (rys.4-4) podkreślony jest szczególnie fałdową budową skal fliszowych, wykorzystuje geometrię spęków i obecność dolin zbierających wody z form stokowych. Układ pierzasty spotykany jest w południowej części województwa, szczególnie na wschodź od Soły, w rejonie Łękawicy i Ślemienia.

Rzeki konsekwenntne występują w części zachodniej województwa, w której powierzchnia nachylona jest w kierunku NW (w nawiązaniu do postglaciałnej budowy geologicznej) oraz w części południowej, o nachyleniu N, co obrazuje się odpływem w takim samym kierunku. W części środkowej rzeki odpływają na wschodź, i SE a w części N na NE.

PODSUMOWANIE I WNIOSKI

Analiza rozkładu sieci hydrograficznej przedstawiona na modelu DEM (rys.2) pozwala na wysunięcie wielu interpretacji dotyczącej charakterystyki, gęstości,
a przede wszystkim geometrycznego układu i rozmieszczenia sieci rzecznej. Upowszechnianie technik komputerowych znajduje zastosowanie do automatycznego obliczania parametrów cieków w obrębie zlewni np. w odniesieniu do wskaźników praw Horton-a-Strahlera (Szczepanek, 1999).

Niniejszy artykuł ma postać przyczniku do szerszego opracowania o charakterze krajobrazowym. Dalszym zamiarem autorów jest bowiem wydzielanie regionów krajobrazowych biorących za podstawę zespół elementów tj. budowa geologiczna, rzeźba terenu, układ sieci rzecznej, pokrycie roślinne oraz próba porównania ich układu z makroregionami fizycznogeograficznymi. Pierwsze obserwacje w tym zakresie, biorące za podstawę układy sieci rzecznej, kształtujące się w nawiązaniu do budowy litologicznej i rzeźby wykazują pewne rozbieżności w stosunku do przyjętych podziałów regionalistycznych. Analiza rozkładu sieci rzecznej daje zatem podstawę do polemiki w zakresie weryfikacji tych podziałów.

Efectem przeprowadzonych analiz było:

Zestawienia wektorowej sieci rzecznej z modelem DEM, które otwiera nowe możliwości w dziedzinie badań morfostrukturalnych terenu z wykorzystaniem modeli numerycznych;

Wskazanie na możliwości poszerzenia tych analiz - uzupełnienie ich o kolejne moduły tematyczne tj.: budowa geologiczna, jednostki krajobrazowe, moduły historyczno-kulturowe, antropogeniczne np. urbanizacyjne. Stwarza to nowe pole badawcze dla interdyscyplinarnych badań krajobrazowych;

Wizualizacja sieci rzecznej na modelach cyfrowych DEM oraz obliczone wartości wskaźników przedstawiających rozkład sieci rzecznej nasunęły autorom pomysł na wydzielanie różnych układów sieci rzecznej różniących się nie tylko układem przestrzennym ale także wykazujących związek z rzeźbą i budową geologiczną co odzwierciedla się w przebiegu konsekwentnym i subsekwentnym głównych rzek na terenie objętym granicami województwa.

Przeprowadzona analiza ujawnia podstawowy problem związany z szacunkowym zliczeniem ilości cieków na podstawie materiałów kartograficznych (są one mało precyzyjne, często rozbierne od rzeczywistego obrazu terenowego).

LITERATURA

Bajkiewicz-Grabowska E., Mikulski Z., 1999: Hydrologia ogólna. PWN, Warszawa, s 68-73
Gilewska S., 1986: Podział Polski na jednostki geomorfologiczne. Przegląd Geograficzny, t.58, s.15-40.
SUMMARY

An attempt to use digital maps and models for analysing geometric systems of the hydrographic network. On the example of the Silesian province

Applying the computer analysis technology for generating digital maps and models may be helpful for determining causes and environmental consequences of formation of geometric systems of the hydrographic network. The digital analysis tools applied by the author allow for morphogenetic-statistical description of the river network systems and are the basis for precise interpretation of the internal structure of these systems. Another value is given by compilation of the thematic layer of surface waters with the spatial model of the sculpture and the geological map, which, in turn, makes it possible to explain relations between calculated theoretical ratios and actual elements of the environment. At the current phase of research, the authors have concentrated on analysing selected parameters of the river network, using the characteristics of geometrical systems of the river network in the area of the Silesian Province as the reference point.

dr Jerzy Nitko
Wydział Nauk o Ziemi
Uniwersytet Śląski
ul. Będzińska 60
41-200 Sosnowiec

dr Urszula Myga-Piątek
Wydział Nauk o Ziemi
Uniwersytet Śląski
ul. Będzińska 60
41-200 Sosnowiec
Cyfrowy Model Terenu opracowano na podstawie Numerycznych Danych Wysokościowych Terenu (DTED) poziom 2 (dzięki uprzejmości Zarządu Geografii Wojskowej sztabu generalnego Wojska Polskiego). Opracowanie - J. Nita
Rys.2. Sieć rzeczna województwa śląskiego (J. Nity)
Fig.2. Rivers network of silesia voivodeship (by Nita)
Rys. 3 Przykłady geomorycznych układów sieci rzecznej. Objaśnienia w tekście (J. Nita)
Fig. 3. Examples of geomorphic systems of rivers network. Descriptions in text

1. układ kratowy (lattice)
2. układ prostokątny (Wright-angled)
3. układ nieregularny (irregular)
4. układ widlasty (forked)
Fig. 4. Examples of geometric system of rivers network Descriptions in text.

5. promienisty (radial)
6. dendryczny (dendritic)
7. równoległy (parallel)
8. pierzasty (leathery)